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We study three models of matter coupled to the ultraviolet cutoff, quantized
radiation field and to the Coulomb potential of arbitrarily many nuclei. Two are
nonrelativistic: the first uses the kinetic energy (p+eA(x))2 and the second uses
the Pauli–Fierz energy (p+eA(x))2+es ·B(x). The third, no-pair model, is rel-
ativistic and replaces the kinetic energy with the Dirac operator D(A), but
restricted to its positive spectral subspace, which is the ‘‘electron subspace.’’ In
each case we are able to give an upper bound to the binding energy–as distinct
from the less difficult ground state energy. This implies, for the first time we
believe, an estimate, albeit a crude one, of the mass renormalization in these
theories.
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1. INTRODUCTION

There has been a great deal of recent work dedicated to the construction of
a theory of ordinary bulk matter interacting with the quantized radiation
field. In such theories the number of electrons, N, is usually held fixed (i.e.,
pair production is not allowed) and these N particles interact with each
other and with K fixed nuclei via the ordinary electrostatic Coulomb
potential—in the Coulomb gauge. (The nuclei are fixed because they are,
relative to the electrons, infinitely massive.) The electrons also interact with



the magnetic vector potential A which is quantized and which has the well
known quantized field energy. It is essential, however, to have an ultra-
violet cutoff L in the interaction of electrons and A field, for otherwise
almost everything in the theory becomes infinite. This is not an enormous
drawback since we are interested only in the low energy physics of atoms,
molecules and photons.

Attention has been paid mostly to the stability of matter, namely that
the ground state energy is bounded below by C(N+K), where C is some
universal constant (depending on the parameters of the theory but not on
N and K). (1–6) Almost no attention has been paid to the estimation of the
atomic binding energy, i.e., to the difference between the ground state
energies with and without the Coulomb potential.

In this paper we shall consider two nonrelativistic theories and one
relativistic theory. In the absence of quantized fields, the ground state
energy (or ‘‘self energy’’) of a free electron (i.e., without other electrons and
nuclei) is zero in the nonrelativistic case and equals mc2 in the relativistic
case. (Here, m is the unrenormalized, or ‘‘bare’’ mass of the elctron.) When
N electrons are present, but without nuclei, the energy is still zero (or
Nmc2) because the electrons can move infinitely far apart. Therefore, in the
presence of nuclei, the ground state energy is equal to the binding energy
(or equals the binding energy plus Nmc2) when there is no quantization of
the A field.

The situation changes dramatically when the A field is quantized. The
self-energy of a free electron (i.e., the ground state energy without Coulomb
potentials but with the quantized A field) is large if L is not too small. If
the fine structure constant a=e2/(c is not too large (e.g., 1/137) and if the
nuclear charges are not too large then the change in the ground state
energy is not very large. Thus, the binding energy is the difference of two
large quantities and its calculation is like ‘‘looking for a needle in a
haystack.’’

All three models use ‘‘minimal coupling,’’ i.e., p is replaced by p+
eA(x)/c in the kinetic energy. The first has no explicit spin interaction with
the magnetic field while the second–the Pauli–Fierz model–has a `a s ·
B(x) term. The latter is much more delicate than the former (e.g., it
requires bounds on a and Z, as well as the presence of a field energy, for
stability, while the former needs no such restrictions), and our results in the
second case are not as good as in the first. Still, they are meaningful. The
third theory uses the Dirac operator and is relativistic (except for an
ultraviolet cutoff in the A field).

Clearly, it is essential to have a decent grasp of the binding energy,
which is the truly physical quantity, in order to be able to proceed with a
non-perturbative renormalization program. It is useful to recall that the
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binding energy for one electron and one nucleus of charge Z should be
1
2mphysc

2a2Z2, where mphys is the physical, renormalized electron mass. In the
case of hydrogen, Z=1, this is a comparatively tiny energy. (There is no
charge renormalization in a theory, without pair production, but there is
one in a theory with pair production, in which case a here must be replaced
by the renormalized a.)

Our purpose here is to find an upper bound to the binding energy in
the two non-relativistic QED theories that have been extensively studied in
the literature and to the relativistic theory in ref. 3. We believe it is the first
time that such a rigorous estimate has been made. Note that the binding
energy (14) is always positive, by definition, and thus an upper bound cor-
responds to a lower bound on the energy of the fully interacting system
relative to the energy of free electrons.

If we equate the binding energy (which depends on the unrenor-
malized, or ‘‘bare’’ mass m) to the physical binding energy (which depends
on mphys) we obtain a bound to the amount of renormalization that is
needed (see (23), (27), and (29–31) for the first model). We believe that
these are the first rigorous renormalization estimates of their kind in a
(admittedly simple-minded) quantized theory of electrons and photons.

Let us note an interesting feature of our results about the mass. There
are several ways to define the renormalized mass. The usual one is to look
at the ground state energy of a free electron with fixed total momentum
(electron+field) and to define 1/2mphys to be the coeefficient of p2 in the
energy at p=0. Another way is to set the binding energy equal to the
physical binding energy, as is done here.

• The latter definition has the property that for every value of L and
of mphys there is a value of m that gives equality. (Our bound is unique, but
the true answer is, conceivably, not unique.)

• The former, usual definition very likely yields a solution for m only
if L and 1/mphys are sufficiently small. (We always assume that m \ 0 in
order that the notion of a ground state makes sense for the unrenormalized
theory.)

We cannot prove this last statement but it agrees with the prediction
of perturbation theory and with classical electromagnetism. It also agrees
with Van Kampen’s exact solution of Kramer’s ‘‘dipole approximation’’
model, (7) which was the model that gave impetus to the renormalization
program in QED. Instead of (p+A(x))2 as in our first model, one takes
(p+A(0))2. In such a model the energy of N free electrons goes as
CL3/2`N instead of CL3/2N, as in our model (see (21)), but this is not
the most significant point. For N=1 one can compute the energy as a
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function of momentum p and finds that, with the first definition, mphys=
CŒm+aL. Consequently, there is no solution for m if L or 1/mphys are
large.

The first HamiltonianHN we consider is given by

1
(c
HN=T+aVc+Hf, (1)

where T is proportional to the kinetic energy of N electrons

T=C
N

j=1
Tj (2)

with

Tj=
(

2mc
(pj+`a A(xj))2, (3)

with pj=iNxj , and where m is the (unrenormalized or bare) mass of the
electron. The quantized, ultraviolet cutoff electromagnetic vector potential
is

A(x)=
1
2p

C
2

l=1
F
|k| [ L

el(k)

`w(k)
(al(k) e ik ·x+a

g
l (k) e

−ik ·x) dk, (4)

where L is the ultraviolet cutoff on the wave-numbers |k|. The operators
al, a

g
l satisfy the usual commutation relations

[al(k), a
g
n (q)]=d(k−q) dl, n, [al(k), an(q)]=0, etc. (5)

and the vectors el(k) are the two possible orthonormal polarization vectors
perpendicular to k and to each other. The field energy is

Hf= C
l=1, 2

F
R
3
w(k) agl (k) al(k) dk; (6)

the physical choice of w is w(k)=|k|, but our Theorems 2.1 and 3.1 are not
restricted to this choice. No infrared cutoff is needed.

Finally, there is the Coulomb potential. There are K nuclei with posi-
tive charges eZ1,..., eZK and with fixed locations R1,..., RK in R3. In this
model the nuclei will preferentially locate themselves at those Rj that
minimize the total energy, but these special locations are irrelevant for our
theorem.

Vc=−C
N

i=1
C
K

k=1
Zk

1
|xi−Rk |

+ C
1 [ i < j [N

1
|xi−xj |

+ C
1 [ k < l [K

ZkZl
1

|Rk−Rl |
.

(7)
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The Hilbert space is HN=MN
i=1 L

2(R3; Cq) éF, where N denotes the
antisymmetric tensor product (Fermi statistics), F is the photon Fock
space, q is the number of spin states for each electron (q=2 in nature). The
Hamiltonian (1) is bounded below by C(N+K) (even without the aid
of Hf); this was first stated in ref. 8, p. 857 and ref. 9, p. 2, who noted that
the stability proof in ref. 10 with A=0 extends to the A ] 0 case by virtue
of a diamagnetic inequality. In ref. 8 a remark of J. Fröhlich is presented,
that this applies equally well to the quantized A field (4) because
[A(x), A(y)]=0 for all x, y. We use and discuss this fact again in (17)
later.

The Pauli–Fierz Hamiltonian,HPFN , which is treated in Section 3, is

HPFN=HN+
(
2

2m
`a C

N

j=1
sj ·B(xj) with B(x)=curl A(x). (8)

The Pauli matrices sj are the spin- 12 operators for particle j.
The third model is the relativistic no-pair model treated in ref. 3,

whose Hamiltonian is

1
(c
H relN=P

+ 3 C
N

i=1
Di(A)+aVc+Hf 4 P+. (9)

Here, D(A) is the Dirac operator

D(A) :=aF · (−iN+`a A(x))+
mc
(
b, (10)

and P+ is the projector onto the positive spectral subspace of D(A) for all
of the N electrons. Since the N Dirac operators commute with each other,
this definition of P+ as a projector makes sense. In other words, we start
with the usual Hilbert space HN and then replace it by the smaller physical
Hilbert space Hphys

N =P
+HN. In Hphys

N it is impossible to separate the L2

spaces from the Fock space.
While energy, being one component of a four-vector, is not a relativ-

istically invariant quantity, it is true, nevertheless, that positive and nega-
tive energies of D(A) are relativistic concepts since they are invariant under
Lorentz transformations that do not change the direction of time. We
thank J.-M. Graf for this remark and we thank J. Yngvason for noting that
for this to be true it is essential that the joint spectrum of energy and
momentum of D(A) lies in the light cone. We have not proved this, but it is
plausibly true.
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2. BINDING ENERGY BOUND (SIMPLE VERSION)

In this section we analyze the binding energy for HN.
We define Z=max{Z1,..., ZK} \ 0 and set

o=
p

2
Z+2.2159q1/3Z2/3+1.0307q1/3. (11)

We also define the (positive) free-electron ground state energy

E0(N)=inf specHN(0) > 0 (12)

(where HN(0) is the Hamiltonian (1) without the Vc term), the total ground
state energy

E(N)=inf specHN [ E0(N), (13)

and the (positive) binding energy

DE(N)=E0(N)−E(N). (14)

Theorem 2.1 (Binding Energy for HN). Assume one of two cases:

E0(N)3
[ 1
2 (oa)

2 mc2N, Case A
\ 1
2 (oa)

2 mc2N, Case B.
(15)

Then the binding energy per electron satisfies

DE(N)
N

[ ˛ (oa)
2 mc2 Case A

oa`2mc2`E0(N)/N Case B.
(16)

Proof. We use the known result for the stability of ‘‘relativistic’’
matter in the form given in ref. 11, Eqs. (2.9) and (5.2) (which improves
some of the results in ref. 6).

Vc \ −o C
N

j=1
|pj+`a A(xj)| (17)

for any vector field A(x). (Note that although (17) was proved for ordi-
nary, non-quantized A fields, we are allowed to use it for our operator-
valued field (4) since the commutator [A(x), A(y)]=0 for all x, y, and
hence there is a representation in which A(x) is an ordinary vector field. Of
course, A(x) does not commute with Hf but that is immaterial.)
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By Schwarz’s inequality

Vc \ −o`2mc/( `N`T . (18)

Since Hf \ 0 and since the square root is operator monotone,

1
(c
HN \T+Hf−oa`2mc/( `N`T

\T+Hf−oa`2mc/( `N`T+Hf . (19)

The final step is to note that the function f(x)=x−oa`2mc/( `N
`x has its minimum at x=o2a2mcN/2(. Therefore, when x [ o2a2mcN/
2( we can say that f(x) is not less than the minimum of f(x), which is
− 12 (oa)

2 mcN/(. This is Case A of (15). Therefore DE [ E0(N)+
1
2 (oa)

2

mc2N [ (oa)2 mc2N, which is Case A of (16). On the other hand, if
x \ o2a2mcN/2( we can say that f(x) is monotone increasing in x. Since
x=T+Hf \ E0(N)/(c \ o2a2mcN/2(, the infimum of the spectrum of
the right side of (19) is given by f(E0(N)/(c), which is Case B of (16). L

To apply this Theorem 2.1 we must have a decent estimate of E0(N).
Let us consider the physical case w(k)=|k| and let us define (with
lC=(c/mphys=physical Compton wavelength)

R=
(c L
mc2
=
mphys
m
LlC, (20)

which is the ratio of the cutoff photon energy to the self energy that an
electron would have in a relativistic theory. A bound on E0(N) in this case
is provided in ref. 12 where a proof is announced and outlined that for
fermions there are constants C1, C2 (depending on q) such that (for large L
and fixed a)

C1 mc2a1/2R3/2N [ E0(N) [ C2 mc2a2/7R12/7N (21)

The exact exponent is still not known but we lean towards 12/7. In any
case, it differs from the perturbation theory value 2. Fermions are most
important here because one can show (12) that C3 mc2a1/2R3/2N1/2 < E0(N) <
C4 mc2a2/7R12/7N5/7 for bosons, and this would be useless for our purposes.
Unfortunately, the bounds in (21) do not imply that E0(N) is strictly linear
in N, as one would hope. We also note that (21) holds even if the Coulomb
repulsion among the electrons is omitted.
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If R is small then we are in Case A. This will surely be so if
o2a12/7 \ 2C2 R12/7. Let us note that o [ 5.67Z for Z \ 1 and q=2. Then,

DE(N)
N

[ (32.2) a2Z2mc2 Case A, (22)

which compares not unfavorably with the hydrogenic value ehydrogenic(Z)
=Z2a2mphysc2/2, where mphys is the physical electron mass. As L increases
the bare mass m should decrease. If we set DE(N)/N=ehydrogenic(Z),
inequality (22) tells us that the required bare mass cannot be too small,
namely

m \ mphys/64.4 Case A. (23)

We turn now to Case B, which surely holds if

o2a3/2 [ 2C1R3/2. (24)

With the help of (21) we can conclude that

DE(N)
N

[`2C2 oa8/7R6/7mc2 Case B. (25)

To understand Case B further, let us use o [ 5.67Z and note that (25)
becomes

DE(N)
Nehydrogenic(Z)

[
5.67
Z
C1/22
C4/71

213/14m8/7
m
mphys

if 5.67Z [ m, (26)

with m=a−3/4`2C1 R3/4.
To satisfy the condition in (26) for all Z [ 92 we can take m=

5.67 · 92=522 or R=(522)4/3(2C1)−2/3a=30.7(2C1)−2/3 (with a=1/137)).
This means that we fix L in units of the bare Compton wavelength (c/m.
Assuming that we choose C1 to be not too large (which can always be done
since C1 refers to a lower bound in (21)), this allows for a sizeable value of
the cutoff L (see (20)). Now let us set the left side of (26) equal to 1, in
order to make contact with experiment. We then find (since Z \ 1) that

m \ mphys C
4/7
1 C

−1/2
2 /13, 800 Both Cases. (27)

Alternatively, we may measure L in terms of the physical Compton
wavelength lC. That the bare mass cannot be too small can be seen as
follows. Consider the following inequality, which is related to (24)

(5.67 · 92)2 a3/2 [ 2C1R3/2. (28)
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If this inequality fails then we have the bound

m \ mphysLlC(2C1)2/3 (5.67 · 92)−4/3 a−1=1.74 · 10−6(2C1)2/3 LlCmphys
(29)

with a=1/137.
On the other hand if (28) holds then (24) holds for all Z [ 92 (since

o [ 5.67Z). Then we are in Case B and if we express the right of (26)
entirely in terms of LlC we find (for all Z [ 92)

m \ (2 · 5.67`2C2)−7 a6(92)7 (LlC)−6 mphys (30)

=3.0×10−8 C−7/22 (LlC)−6 mphys. (31)

3. BINDING ENERGY BOUND (PAULI–FIERZ VERSION)

In this section we analyze the binding energy for HPFN in (8). The
ground state energy and binding energy are defined as before in (12), (13),
and (14), but with HPFN , and we do not encumber the notation with a
superscript PF. As far as constants are concerned, the following theorem
is not the best possible one, but it is presented this way for simplicity. In
particular, we do not have to assume that a is bounded—as we do in the
hypothesis of Theorem 3.1.

Some constants have to be defined. The maximum nuclear charge Z is
defined as before and we then define W=max{Z, 20.6}. (Note, for later
use, that 20.6=64.5/p.) We also define t=(0.060)(8p)(3/4)−3/2=2.322
and

C=9.65 1aK
N
21/4 L. (32)

We also define the operator (cTŒ to be the total Pauli–Fierz kinetic energy,
namely,

TŒ=C
N

j=1
TPFj =T+

(

2mc
`a C

N

j=1
sj ·B(xj) \ 0, (33)

where

TPFj =
(

2mc
{(pj+`a A(xj))2+`a sj ·B(xj)}

=
(

2mc
{sj · (pj+`a A(xj))}2. (34)
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Theorem 3.1 (Binding Energy for H PF
N ). Assume that 2pWta2 < 1

and assume one of two cases:

E0(N)˛
[ 2(1−2pWta2)−2 (pWa)2 mc2N, Case A
\ 2(1−2pWta2)−2 (pWa)2 mc2N, Case B.

(35)

Then the binding energy per electron satisfies

DE(N)
N

[ ˛2(pWa)
2 (1−2pWta2)−2 (2−2pWta2) mc2+2pWaC(c Case A

2pWta2 E0(N)/N+2pWa`2mc2`E0(N)/N+2pWaC(c Case B.
(36)

Proof. The strategy is the same as in Theorem 2.1. An analogue of
(17) is provided by ref. 3.

1
2pW

Vc \ − C
N

j=1
|sj · (pj+`a A(xj))|−taHf−CN, (37)

The derivation of (37) from ref. 3 will be explained at the end of the
proof. For the moment let us continue with the proof of the theorem. The
analogue of (18) is then

1
2pW

Vc \ −`2mc/( `N`TŒ−taHf−CN. (38)

Consequently, since TŒ \ 0,

1
(c
HN \ (TŒ+Hf)(1−2pWta2)

−2pWa`2mc/( `N`TŒ+Hf−2pWaCN. (39)

The rest follows as in the proof of Theorem 2.1.
It remains to show how (37) arises from ref. 3. We consider a Hamil-

tonian, ĤN, similar to HŒ −N in ref. 3, but with some auxiliary parameters.

ĤN=C
N

j=1
|sj · (pj+`a A(xj))|+aŒVc+cHf, (40)
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with aŒ, c > 0. Note that ĤN has the dimension of length−1 and not an
energy. Note also that the a appearing in pj+`a A(xj) is the true a and
not aŒ.

We shall prove the analogue of Theorem 2.2 of ref. 3 with ĤN in place
of H'N and with an appropriate substitute for the lower bound stated in
Theorem 2.2. Theorem 3.1 of ref. 3 is unchanged, and we turn to Section 4.
We take e=0 (it can be taken to be zero even if m ] 0). All the equations
in this section remain true if we replace oa by oaŒ and o2a2 by o2(aŒ)2.
Thus, in the lower bound for the operator H2 in Section 4 of ref. 3, there is
a in the numerator and aŒ in the denominator.

The next step is to use the inequality in Example 1 of Appendix B of
ref. 3 to bound > B2 appearing in the lower bound for H2, but we have to
remember that we have cHf and not Hf. Thus, the analogous conditions
on the parameters are o [ pW, oaŒ < 1 and c \ 8p(0.060) a(1−o2(aŒ)2)−3/2.

We make the choices

o=pW, aŒ=(2pW)−1, c=ta. (41)

The lower bound to ĤN is as in ref. 3. We find that the corresponding
number C2 is bounded by

C42=
N
K
56+(aŒ/2)(`2Z+2.3)2

(27/2p) c
6 <N
K
513p
27c
6 , (42)

since (`2Z+2.3)2/2pW < 1.
The analogous lower bound for the operator ĤN, is then

1
N
ĤN > −

K
N
518 Lc
p
6 C32 > −1

aK
N
21/4 Ln (43)

with n=(t/p)1/4 (2/3)(39)3/4=9.65.
This completes the derivation of (37) from ref. 3. L

Using Theorem 3.1 we could proceed to derive more explicit bounds
for the binding energy and mphys–as in the discussion after 2.1, but we leave
this task to the interested reader. The only needed information is the
analogue of (21) for the Pauli–Fierz operator. As announced in ref. 12

C1mc2
a

1+a2/3
RN [ E0(N) [ C2mc2a1/2R3/2N. (44)
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4. BINDING ENERGY BOUND (RELATIVISTIC VERSION)

We consider the Hamiltonian H relN in (9). Our results here are very
crude and we state them mainly to point out that realistic results on the
binding energy could be obtained if one were able to improve the estimates
of various constants. In the present situation we do not have any bounds
on E0(N) (other than the simple one E0(N) > mc2N), but we expect some-
thing like E0(N)/N ’ mc2+(const.) (c L for not too small L.

We set Tœ=P+;N
i=1 |Di(A)| P

+. With P+D(A) P+ in place of |sj ·
(pj+`a A(xj))|, (37) is valid for P+VcP+—in the same way that the
inequalities of Theorems 2.1 and 2.2 of ref. 3 are valid with the same con-
stants. We find that

1
(c
H relN \ −2pWaTœ−2pWta2Hf−2pWaCN+Tœ+Hf

=(1−2pWa)Tœ+(1−2pWta2) Hf−2pWaCN

\ (1−2pWta2)(Tœ+Hf)−2pWaCN (45)

since ta < 1. Therefore,

DE(N)
N

[ 2pWa
E0(N)
N
+2pWaC(c. (46)

We note that—apart from the unnaturally large constant—the binding
energy appears to be bounded by a times the self-energy. We also note that
(45) and (46) can be improved a little by using the free parameter 0 [ e < 1
that appears in Section 4 of ref. 3; we have taken e=0 here, as we did in
Section 3.
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